Wasserstein Asymptotics for Empirical Measures of Subordinate Killed Diffusions on Compact Riemannian Manifolds

Huaiqian Li

(Joint work with Bingyao Wu)

Center for Applied Mathematics Tianjin University Tianjin 300072, P. R. China

The 17th Workshop on Markov Processes and Related Topics 2022.11.25–27.

1 Motivation and the setting

2 Main results

3 Idea of proofs

1 Motivation and the setting

2 Main results

3 Idea of proofs

Given a Markov process $X := (X_t)_{t \ge 0}$ on a Polish space (M, ρ) with a Borel probability measure μ , we expect that

$$\frac{1}{t} \int_0^t T_{\mathcal{A}} f \, \mathrm{d}s \xrightarrow{t \to \infty} \int_M f \, \mathrm{d}\mu =: \mu(f), \quad f \in C_b(M), \tag{E}$$

where $T_t f(x) := \mathbb{E}^x [f(X_t)].$

Denote the empirical measures associated with X as

$$\mu_t = \frac{1}{t} \int_0^t \delta_{X_u} \, \mathrm{d}u, \quad t > 0,$$

where δ . is the Dirac measure.

CLASSIC: if μ is the unique invariant probability measure of *X*, then for every $x \in M$, \mathbb{P}^x -a.s., as $t \to \infty$,

$$\mu_t \xrightarrow{w} \mu_t$$
, i.e., $\mu_t(f) \to \mu(f), f \in C_b(M).$

which in particular implies (E). See e.g. Da Prato-Zabczyk (1996).

Given a Markov process $X := (X_t)_{t \ge 0}$ on a Polish space (M, ρ) with a Borel probability measure μ , we expect that

$$\frac{1}{t} \int_0^t T_{\mathcal{A}} f \, \mathrm{d}s \xrightarrow{t \to \infty} \int_M f \, \mathrm{d}\mu =: \mu(f), \quad f \in C_b(M), \tag{E}$$

where $T_t f(x) := \mathbb{E}^x [f(X_t)].$

Denote the empirical measures associated with X as

$$\mu_t = \frac{1}{t} \int_0^t \delta_{X_u} \,\mathrm{d} u, \quad t > 0,$$

where δ . is the Dirac measure.

CLASSIC: if μ is the unique invariant probability measure of *X*, then for every $x \in M$, \mathbb{P}^x -a.s., as $t \to \infty$,

$$\mu_t \xrightarrow{w} \mu_t$$
, i.e., $\mu_t(f) \to \mu(f), f \in C_b(M).$

which in particular implies (E). See e.g. Da Prato–Zabczyk (1996).

Given a Markov process $X := (X_t)_{t \ge 0}$ on a Polish space (M, ρ) with a Borel probability measure μ , we expect that

$$\frac{1}{t} \int_0^t T_{s} f \, \mathrm{d}s \stackrel{t \to \infty}{\to} \int_M f \, \mathrm{d}\mu =: \mu(f), \quad f \in C_b(M), \tag{E}$$

where $T_t f(x) := \mathbb{E}^x [f(X_t)].$

Denote the empirical measures associated with X as

$$\mu_t = \frac{1}{t} \int_0^t \delta_{X_u} \,\mathrm{d} u, \quad t > 0,$$

where δ is the Dirac measure.

CLASSIC: if μ is the unique invariant probability measure of *X*, then for every $x \in M$, \mathbb{P}^x -a.s., as $t \to \infty$,

$$\mu_t \stackrel{\scriptscriptstyle W}{\to} \mu, \qquad \text{i.e.}, \qquad \mu_t(f) \to \mu(f), f \in C_b(M).$$

which in particular implies (E). See e.g. Da Prato-Zabczyk (1996).

Given a Markov process $X := (X_t)_{t \ge 0}$ on a Polish space (M, ρ) with a Borel probability measure μ , we expect that

$$\frac{1}{t} \int_0^t T_{s} f \, \mathrm{d}s \stackrel{t \to \infty}{\to} \int_M f \, \mathrm{d}\mu =: \mu(f), \quad f \in C_b(M), \tag{E}$$

where $T_t f(x) := \mathbb{E}^x [f(X_t)].$

Denote the empirical measures associated with X as

$$\mu_t = \frac{1}{t} \int_0^t \delta_{X_u} \,\mathrm{d} u, \quad t > 0,$$

where δ is the Dirac measure.

CLASSIC: if μ is the unique invariant probability measure of *X*, then for every $x \in M$, \mathbb{P}^x -a.s., as $t \to \infty$,

$$\mu_t \xrightarrow{w} \mu,$$
 i.e., $\mu_t(f) \to \mu(f), f \in C_b(M).$

which in particular implies (E). See e.g. Da Prato-Zabczyk (1996).

Let $p \in [1, \infty)$. Define the (pseudo) Wasserstein (or Kantorovich) distance as

$$W_p(\nu_1,\nu_2) = \left(\inf_{\pi \in \mathcal{C}(\nu_1,\nu_2)} \int_{M \times M} \rho(x,y)^p \,\mathrm{d}\pi(x,y)\right)^{1/p}, \quad \nu_1,\nu_2 \in \mathcal{P}(M),$$

where $C(\nu_1, \nu_2)$ stands for the class of couplings of ν_1 and ν_2 , $\mathcal{P}(M)$ is the class of probability measures on *M*.

The problem is to study the behavior for large t of

 $\mathbb{E}\big[W_p(\mu_t,\mu)^p\big].$

Diffusion processes

Consider the triple (M, ρ, μ) , where

- *M d*-dimensional compact connected Riemannian manifold with smooth boundary ∂M ,
 - ρ geodesic distance on M,
 - μ Borel probability measure defined by

$$\mu(\mathrm{d}x) = e^{U(x)} \mathrm{vol}(\mathrm{d}x),$$

where $U \in C^2(M)$ and vol is the volume measure.

Let X_t be the diffusion process generated by

 $\mathcal{L} = \Delta + \nabla U,$

with hitting time

$$\tau = \inf\{t \ge 0 : X_t \in \partial M\}.$$

Diffusion processes

Consider the triple (M, ρ, μ) , where

- *M d*-dimensional compact connected Riemannian manifold with smooth boundary ∂M ,
 - ρ geodesic distance on M,
 - μ Borel probability measure defined by

$$\mu(\mathrm{d}x) = e^{U(x)} \mathrm{vol}(\mathrm{d}x),$$

where $U \in C^2(M)$ and vol is the volume measure.

Let X_t be the diffusion process generated by

$$\mathcal{L} = \Delta + \nabla U,$$

with hitting time

$$\tau = \inf\{t \ge 0 : X_t \in \partial M\}.$$

Let $\mathbb{N}_0 = \{0\} \cup \mathbb{N}$. It is well known that the spectrum of $-\mathcal{L}$ is discrete, whose eigenvalues are listed in an ascending order counting multiplicities

$$0 < \lambda_0 \le \lambda_1 \le \lambda_2 \le \cdots \to \infty,$$

and the eigenfunctions ϕ_m , $m \in \mathbb{N}_0$, satisfying the Dirichlet boundary condition, form an ONB in $L^2(\mu)$.

WLOG, assume $\phi_0 > 0$ on $\mathring{M} := M \setminus \partial M$.

Moreover, there exists a constant $\kappa \geq 1$ such that

$$\kappa^{-1}m^{\frac{2}{d}} \leq \lambda_m - \lambda_0 \leq \kappa m^{\frac{2}{d}}, \quad \|\phi_m\|_{\infty} \leq \kappa \sqrt{m}, \qquad m \in \mathbb{N}.$$

Subordinate killed diffusion processes

Let

 $\mathbf{B} = \{B : B \text{ is a Bernstein function with } B(0) = 0, B'(0) > 0\},\$ where recall that *B* is a Bernstein function if

$$B \in C^{\infty}((0,\infty);[0,\infty)) \cap C([0,\infty);[0,\infty)),$$

and for each $n \in \mathbb{N}$,

$$(-1)^{n-1}\frac{\mathrm{d}^n}{\mathrm{d}r^n}B(r)\geq 0,\quad r>0.$$

WELL KNOWN: $\forall B \in \mathbf{B}, \exists !$ subordinator $(S_t^B)_{t \ge 0}$ such that $\mathbb{E}e^{-\lambda S_t^B} = e^{-tB(\lambda)}, \quad t, \lambda \ge 0.$

From now on, let $B \in \mathbf{B}$ and $(S_t^B)_{t\geq 0}$ be the subordinator *independent* of $(X_t)_{t\geq 0}$. Define the subordinate killed diffusion process $(X_t^B)_{t\geq 0}$ as

$$X_t^B = X_{S_t^B \wedge \tau}, \quad t \ge 0.$$

Subordinate killed diffusion processes

Let

 $\mathbf{B} = \{B : B \text{ is a Bernstein function with } B(0) = 0, B'(0) > 0\},\$ where recall that *B* is a Bernstein function if

$$B \in C^{\infty}((0,\infty);[0,\infty)) \cap C([0,\infty);[0,\infty)),$$

and for each $n \in \mathbb{N}$,

$$(-1)^{n-1} \frac{\mathrm{d}^n}{\mathrm{d}r^n} B(r) \ge 0, \quad r > 0.$$

WELL KNOWN: $\forall B \in \mathbf{B}, \exists !$ subordinator $(S_t^B)_{t \ge 0}$ such that $\mathbb{E}e^{-\lambda S_t^B} = e^{-tB(\lambda)}, \quad t, \lambda \ge 0.$

From now on, let $B \in \mathbf{B}$ and $(S_t^B)_{t\geq 0}$ be the subordinator *independent* of $(X_t)_{t\geq 0}$. Define the subordinate killed diffusion process $(X_t^B)_{t\geq 0}$ as

$$X_t^B = X_{S_t^B \wedge \tau}, \quad t \ge 0.$$

Subordinate killed diffusion processes

Let

 $\mathbf{B} = \{B : B \text{ is a Bernstein function with } B(0) = 0, B'(0) > 0\},$ where recall that *B* is a Bernstein function if

$$B \in C^{\infty}((0,\infty);[0,\infty)) \cap C([0,\infty);[0,\infty)),$$

and for each $n \in \mathbb{N}$,

$$(-1)^{n-1} \frac{\mathrm{d}^n}{\mathrm{d}r^n} B(r) \ge 0, \quad r > 0.$$

WELL KNOWN: $\forall B \in \mathbf{B}, \exists !$ subordinator $(S_t^B)_{t \ge 0}$ such that $\mathbb{E}e^{-\lambda S_t^B} = e^{-tB(\lambda)}, \quad t, \lambda \ge 0.$

From now on, let $B \in \mathbf{B}$ and $(S_t^B)_{t\geq 0}$ be the subordinator *independent* of $(X_t)_{t\geq 0}$. Define the subordinate killed diffusion process $(X_t^B)_{t\geq 0}$ as $X_t^B = X_{S_t^B \wedge \tau}, \quad t \geq 0.$

Conditional empirical measures

Let

$$\sigma_{\tau}^{\boldsymbol{B}} := \inf\{t \ge 0 : S_t^{\boldsymbol{B}} > \tau\}.$$

Define the conditional empirical measures associated with $(X_t^B)_{t\geq 0}$ by

$$\mu_t^{B,\nu} = \mathbb{E}^{\nu} \Big(\frac{1}{t} \int_0^t \delta_{X_s^B} \, \mathrm{d}s \Big| \sigma_{\tau}^B > t \Big), \quad t > 0, \, \nu \in \mathcal{P}(M),$$

where $\mathcal{P}(M)$ stands for the set of all Borel probability measures on M. NOTE: to avoid the situation that $\mathbb{P}^{\nu}(\sigma_{\tau}^{B} > t) = 0$, we should consider $\mathcal{P}_{0}(M) := \{\nu \in \mathcal{P}(M) : \nu(\mathring{M}) > 0\}.$

Let

$$\mu_0 := \phi_0^2 \mu,$$

which turns out to be the unique *quasi-ergodic distribution* of $(X_t^B)_{t\geq 0}$ for "nice" *B*, i.e., for every $\nu \in \mathcal{P}(M)$ and every Borel set $E \subset M$,

$$\lim_{t\to\infty} \mathbb{E}^{\nu} \Big[\frac{1}{t} \int_0^t \mathbb{1}_E(X_s^B) \,\mathrm{d}s \Big| \sigma_{\tau}^B > t \Big] = \mu_0(E).$$

Conditional empirical measures

Let

$$\sigma_{\tau}^{\mathbf{B}} := \inf\{t \ge 0 : S_t^{\mathbf{B}} > \tau\}.$$

Define the conditional empirical measures associated with $(X_t^B)_{t\geq 0}$ by

$$\mu_t^{B,\nu} = \mathbb{E}^{\nu} \Big(\frac{1}{t} \int_0^t \delta_{X_s^B} \, \mathrm{d}s \Big| \sigma_{\tau}^B > t \Big), \quad t > 0, \, \nu \in \mathcal{P}(M),$$

where $\mathcal{P}(M)$ stands for the set of all Borel probability measures on M. NOTE: to avoid the situation that $\mathbb{P}^{\nu}(\sigma_{\tau}^{B} > t) = 0$, we should consider $\mathcal{P}_{0}(M) := \{\nu \in \mathcal{P}(M) : \nu(\mathring{M}) > 0\}.$

Let

$$\boldsymbol{\mu_0} := \phi_0^2 \boldsymbol{\mu},$$

which turns out to be the unique *quasi-ergodic distribution* of $(X_t^B)_{t\geq 0}$ for "nice" *B*, i.e., for every $\nu \in \mathcal{P}(M)$ and every Borel set $E \subset M$,

$$\lim_{t\to\infty} \mathbb{E}^{\nu} \Big[\frac{1}{t} \int_0^t \mathbb{1}_E(X^B_s) \, \mathrm{d}s \Big| \sigma^B_{\tau} > t \Big] = \mu_0(E).$$

Recall that, for every $p \in [1, \infty)$,

$$W_p(\mu,\nu) = \Big(\inf_{\pi \in \mathcal{C}(\mu,\nu)} \int_{M \times M} \rho(x,y)^p \, \mathrm{d}\pi(x,y) \Big)^{1/p}, \quad \mu,\nu \in \mathcal{P}(M).$$

The aim is, for every $\nu \in \mathcal{P}_0(M)$, as $t \to \infty$, to study the rate of convergence of $\mu_t^{B,\nu}$ to μ_0 under the quadratic Wasserstein distance

 $W_2(\mu_t^{B,\nu},\mu_0).$

In particular, when B(t) = t, see F.-Y. Wang (2021).

Recall that, for every $p \in [1, \infty)$,

$$W_p(\mu,\nu) = \Big(\inf_{\pi \in \mathcal{C}(\mu,\nu)} \int_{M \times M} \rho(x,y)^p \, \mathrm{d}\pi(x,y) \Big)^{1/p}, \quad \mu,\nu \in \mathcal{P}(M).$$

The aim is, for every $\nu \in \mathcal{P}_0(M)$, as $t \to \infty$, to study the rate of convergence of $\mu_t^{B,\nu}$ to μ_0 under the quadratic Wasserstein distance

 $W_2(\mu_t^{B,\nu},\mu_0).$

In particular, when B(t) = t, see F.-Y. Wang (2021).

1 Motivation and the setting

2 Main results

3 Idea of proofs

Let $\alpha \in (0, 1]$ and

$$\begin{split} \mathbf{B}^{\alpha} &:= \left\{ B \in \mathbf{B} : \ \liminf_{\lambda \to \infty} \frac{B(\lambda)}{\lambda^{\alpha}} > 0 \right\}, \\ \mathbf{B}_{\alpha} &:= \left\{ B \in \mathbf{B} : \ \limsup_{\lambda \to \infty} \frac{B(\lambda)}{\lambda^{\alpha}} < \infty \right\}. \end{split}$$

Typical example:

$$B(t) = t^{\alpha}, \quad \alpha \in (0, 1].$$

For other examples, refer to Schilling–Song–Vondraček (2012).

RECALL: $\lambda_m, \phi_m, m \in \mathbb{N}_0$, are eigenvalues and eigenfunctions with Dirichlet boundary condition of the operator $-\mathcal{L}$ in $L^2(\mu)$.

Let $\alpha \in (0, 1]$ and

$$\begin{split} \mathbf{B}^{\alpha} &:= \left\{ B \in \mathbf{B} : \ \liminf_{\lambda \to \infty} \frac{B(\lambda)}{\lambda^{\alpha}} > 0 \right\}, \\ \mathbf{B}_{\alpha} &:= \left\{ B \in \mathbf{B} : \ \limsup_{\lambda \to \infty} \frac{B(\lambda)}{\lambda^{\alpha}} < \infty \right\}. \end{split}$$

Typical example:

$$B(t) = t^{\alpha}, \quad \alpha \in (0, 1].$$

For other examples, refer to Schilling–Song–Vondraček (2012).

RECALL: $\lambda_m, \phi_m, m \in \mathbb{N}_0$, are eigenvalues and eigenfunctions with Dirichlet boundary condition of the operator $-\mathcal{L}$ in $L^2(\mu)$.

Upper bounds

Recall $\mu = e^U$ vol. Let $B \in \mathbf{B}$ and $\nu \in \mathcal{P}_0(M)$. Set

$$\mathbf{I} := \frac{1}{\{\mu(\phi_0)\nu(\phi_0)\}^2} \sum_{m=1}^{\infty} \frac{\{\nu(\phi_0)\mu(\phi_m) + \mu(\phi_0)\nu(\phi_m)\}^2}{(\lambda_m - \lambda_0)[B(\lambda_m) - B(\lambda_0)]^2}$$

Theorem (L.–Bingyao Wu)

Let $\alpha \in (0, 1]$ and $\nu \in \mathcal{P}_0(M)$. If $B \in \mathbf{B}^{\alpha}$, then

$$\limsup_{t\to\infty} \{ t^2 W_2(\mu_t^{B,\nu},\mu_0)^2 \} \le 4\mathbf{I} \in (0,\infty].$$

Moreover, if $B \in \mathbf{B}^{\alpha} \cap \mathbf{B}_{\alpha}$, then I is finite in either of the two cases: (1) $d \leq 2(1+2\alpha)$, (2) $d > 2(1+2\alpha)$ and $\nu = h\mu$ with $h \in L^{2d/(d+2+4\alpha)}(\mu)$.

The rate of convergence is sharp!

Theorem (L.–Bingyao Wu)

Let $\alpha \in (0, 1]$ and $B \in \mathbf{B}^{\alpha}$. Then, for any $\nu = h\mu \in \mathcal{P}_0(M)$ with $h\phi_0^{-1} \in L^p(\mu_0)$ for some $p \in (p_0, \infty]$,

$$\lim_{t \to \infty} \{ t^2 W_2(\mu_t^{B,\nu}, \mu_0)^2 \} = \mathbf{I},$$

where

$$p_0 := \frac{6(d+2)}{d+2+12} \lor \frac{3}{2}.$$

In the particular B(t) = t case, F.-Y. Wang (2021) prove the limit for all $\nu \in \mathcal{P}_0(M)$. So, *how to drop the addition condition on* ν ?

Theorem (L.–Bingyao Wu)

Let $\alpha \in (0, 1]$ and $B \in \mathbf{B}^{\alpha}$. Then, for any $\nu = h\mu \in \mathcal{P}_0(M)$ with $h\phi_0^{-1} \in L^p(\mu_0)$ for some $p \in (p_0, \infty]$,

$$\lim_{t \to \infty} \{ t^2 W_2(\mu_t^{B,\nu}, \mu_0)^2 \} = \mathbf{I},$$

where

$$p_0 := \frac{6(d+2)}{d+2+12} \lor \frac{3}{2}.$$

In the particular B(t) = t case, F.-Y. Wang (2021) prove the limit for all $\nu \in \mathcal{P}_0(M)$. So, *how to drop the addition condition on* ν ?

1 Motivation and the setting

2 Main results

3 Idea of proofs

The target

From now on, $B \in \mathbf{B}^{\alpha}$ for some $\alpha \in (0, 1]$, which implies that

J

$$B(r) \gtrsim r^{\alpha}, \quad r > 1.$$

With some efforts (NOT TRIVIAL), we reduce to prove the following.

Proposition

For every $\nu \in \mathcal{P}_0(M)$ satisfying that $\nu = h\mu$ and $\|h\phi_0^{-1}\|_{\infty} < \infty$,

$$\limsup_{t\to\infty} \{t^2 W_2(\mu_t^{B,\nu},\mu_0)^2\} \le 4\mathrm{I}.$$

Recall

$$\mathbf{I} = \frac{1}{\{\mu(\phi_0)\nu(\phi_0)\}^2} \sum_{m=1}^{\infty} \frac{\{\nu(\phi_0)\mu(\phi_m) + \mu(\phi_0)\nu(\phi_m)\}^2}{(\lambda_m - \lambda_0)[B(\lambda_m) - B(\lambda_0)]^2}.$$

Consider the Doob transform of \mathcal{L} , denoted by

 $\mathcal{L}_0 = \mathcal{L} + 2\nabla \log \phi_0,$

and the corresponding semigroup $(P_t^0)_{t\geq 0}$. FACT: $\{\phi_m \phi_0^{-1}\}_{m\in\mathbb{N}_0}$ is an eigenbasis of $-\mathcal{L}_0$ in $L^2(\mu_0)$.

To estimate $W_2(\mu_t^{B,\nu}, \mu_0)^2$, we apply the inequality (F.-Y. Wang 2022 or Ambrosio–Stra–Trevisan 2019 or Ledoux 2017): for every $f \ge 0$ with $\mu_0(f) = 1$,

$$W_2(f\mu_0,\mu_0)^2 \le 4 \int_M |\nabla(-\mathcal{L}_0)^{-1}(f-1)|^2 \,\mathrm{d}\mu_0$$

Consider the Doob transform of \mathcal{L} , denoted by

 $\mathcal{L}_0 = \mathcal{L} + 2\nabla \log \phi_0,$

and the corresponding semigroup $(P_t^0)_{t\geq 0}$.

FACT: $\{\phi_m \phi_0^{-1}\}_{m \in \mathbb{N}_0}$ is an eigenbasis of $-\mathcal{L}_0$ in $L^2(\mu_0)$.

To estimate $W_2(\mu_t^{B,\nu}, \mu_0)^2$, we apply the inequality (F.-Y. Wang 2022 or Ambrosio–Stra–Trevisan 2019 or Ledoux 2017): for every $f \ge 0$ with $\mu_0(f) = 1$,

$$W_2(f\mu_0,\mu_0)^2 \le 4 \int_M |\nabla(-\mathcal{L}_0)^{-1}(f-1)|^2 \,\mathrm{d}\mu_0$$

Step 1: calculate the Radon–Nikodym derivative

$$\frac{\mathrm{d}\mu_t^{B,\nu}}{\mathrm{d}\mu_0} = \rho_t^{B,\nu} - \mathrm{A}_t + \frac{1}{\mathbb{P}^{\nu}(t < \sigma_{\tau}^B)} \int_0^t \xi_s \,\mathrm{d}s + 1,$$

where

$$\begin{split} \rho_t^{B,\nu} &:= \frac{e^{-B(\lambda_0)t}}{t\mathbb{P}^{\nu}(t < \sigma_{\tau}^B)} \sum_{m=1}^{\infty} \frac{\mu(\phi_0)\nu(\phi_m) + \nu(\phi_0)\mu(\phi_m)}{B(\lambda_m) - B(\lambda_0)} \phi_m \phi_0^{-1}, \\ \mathbf{A}_t &:= \frac{1}{t\mathbb{P}^{\nu}(t < \sigma_{\tau}^B)} \sum_{m=1}^{\infty} \frac{\mu(\phi_0)\nu(\phi_m) + \nu(\phi_0)\mu(\phi_m)}{B(\lambda_m) - B(\lambda_0)} e^{-B(\lambda_m)t} \phi_m \phi_0^{-1}, \\ \boldsymbol{\xi}_s &:= \Big(\sum_{m=1}^{\infty} e^{-B(\lambda_m)s}\nu(\phi_m)\phi_m \phi_0^{-1}\Big) \Big(\sum_{n=1}^{\infty} e^{-B(\lambda_n)(t-s)}\mu(\phi_n)\phi_n \phi_0^{-1}\Big) \\ &- \sum_{m=1}^{\infty} e^{-B(\lambda_m)t}\mu(\phi_m)\nu(\phi_m), \quad 0 < s \le t. \end{split}$$

Step 2: apply Ledoux's inequality

For any $\epsilon > 0$, we have

$$\begin{split} W_{2}(\mu_{t}^{B,\nu},\mu_{0})^{2} &\leq 4 \int_{M} \left| \nabla (-\mathcal{L}_{0})^{-1} \left(\frac{\mathrm{d}\mu_{t}^{B,\nu}}{\mathrm{d}\mu_{0}} \right) \right|^{2} \mathrm{d}\mu_{0} \\ &\leq 4(1+\epsilon) \int_{M} |\nabla (-\mathcal{L}_{0})^{-1}\rho_{t}^{B,\nu}|^{2} \,\mathrm{d}\mu_{0} \\ &\quad + 8(1+\epsilon^{-1}) \int_{M} |\nabla (-\mathcal{L}_{0})^{-1}\mathbf{A}_{t}|^{2} \,\mathrm{d}\mu_{0} \\ &\quad + 8(1+\epsilon^{-1}) \int_{M} \left| \nabla (-\mathcal{L}_{0})^{-1} \frac{1}{t\mathbb{P}^{\nu}(t<\sigma_{\tau}^{B})} \int_{0}^{t} \xi_{s} \,\mathrm{d}s \right|^{2} \mathrm{d}\mu_{0} \\ &=: 4(1+\epsilon) J_{1} + 8(1+\epsilon^{-1}) J_{2} + 8(1+\epsilon^{-1}) J_{3}, \end{split}$$

where the triangle inequality of $\|\cdot\|_{L^2(\mu_0)}$ was also employed.

Step 3: calculate J_1 and J_2

Since

$$-\mathcal{L}_0(\phi_m\phi_0^{-1}) = (\lambda_m - \lambda_0)\phi_m\phi_0^{-1}, \ \|\phi_m\phi_0^{-1}\|_{L^2(\mu_0)} = 1, \quad m \in \mathbb{N},$$

by the integration-by-parts formula, we have

$$\int_M |\nabla (-\mathcal{L}_0)^{-1} (\phi_m \phi_0^{-1})|^2 \, \mathrm{d}\mu_0 = \frac{1}{\lambda_m - \lambda_0}, \quad m \in \mathbb{N}.$$

Then

$$J_{1} = \frac{e^{-2B(\lambda_{0})t}}{t^{2}\mathbb{P}^{\nu}(t < \sigma_{\tau}^{B})^{2}} \sum_{m=1}^{\infty} \frac{[\mu(\phi_{0})\nu(\phi_{m}) + \nu(\phi_{0})\mu(\phi_{m})]^{2}}{(\lambda_{m} - \lambda_{0})[B(\lambda_{m}) - B(\lambda_{0})]^{2}}, \quad (dominant \ term)$$

$$J_{2} = \frac{1}{t^{2}\mathbb{P}^{\nu}(t < \sigma_{\tau}^{B})^{2}} \sum_{m=1}^{\infty} \frac{[\mu(\phi_{0})\nu(\phi_{m}) + \nu(\phi_{0})\mu(\phi_{m})]^{2}}{(\lambda_{m} - \lambda_{0})[B(\lambda_{m}) - B(\lambda_{0})]^{2}} e^{-2B(\lambda_{m})t}.$$

Step 4: estimate J_3

Since
$$(-\mathcal{L}_0)^{-\frac{1}{2}} = \frac{2}{\sqrt{\pi}} \int_0^\infty P_{s^2}^0 \, ds$$
, by Minkowski's inequality, we get

$$J_{3} = \frac{1}{t^{2} \mathbb{P}^{\nu} (t < \sigma_{\tau}^{B})^{2}} \int_{M} \left| \frac{2}{\sqrt{\pi}} \int_{0}^{\infty} \int_{0}^{t} P_{r^{2}}^{0} \xi_{s} \, ds dr \right|^{2} d\mu_{0}$$

$$\leq \frac{4}{\pi t^{2} \mathbb{P}^{\nu} (t < \sigma_{\tau}^{B})^{2}} \Big(\int_{0}^{\infty} \int_{0}^{t} \| P_{r^{2}}^{0} \xi_{s} \|_{L^{2}(\mu_{0})} \, ds dr \Big)^{2}, \quad t > 0.$$

Applying the fact that, there exists a constant $\eta > 0$ such that, for every $t \ge 0$, $p \in [1, \infty]$ and $f \in L^p(\mu_0)$,

$$\|(P_t^0-\mu_0)f\|_{L^p(\mu_0)} \leq \eta e^{-(\lambda_1-\lambda_0)t} \|f\|_{L^p(\mu_0)},$$

we have

$$\|P_{r^2}^0\xi_s\|_{L^2(\mu_0)}\leq 2\eta\|h\phi_0^{-1}\|_\infty e^{-B(\lambda_1)t}e^{-(\lambda_1-\lambda_0)r^2},\quad r,s>0.$$

Thus, by $B(r) \gtrsim r^{\alpha}$ for r > 1, there exists a constant c > 0 such that

$$J_3 \le c \|h\phi_0^{-1}\|_{\infty}^2 e^{-2[B(\lambda_1) - B(\lambda_0)]t}, \quad t > 97.$$

Final step

Putting these estimates together, we find a constants c > 0 such that

$$t^{2}W_{2}(\mu_{t}^{B,\nu},\mu_{0})^{2} \leq \frac{4(1+\epsilon)e^{-2B(\lambda_{0})t}}{\mathbb{P}^{\nu}(t<\sigma_{\tau}^{B})^{2}} \sum_{m=1}^{\infty} \frac{[\mu(\phi_{0})\nu(\phi_{m})+\nu(\phi_{0})\mu(\phi_{m})]^{2}}{(\lambda_{m}-\lambda_{0})[B(\lambda_{m})-B(\lambda_{0})]^{2}} + c(1+\epsilon^{-1})\sum_{m=1}^{\infty} \frac{[\mu(\phi_{0})\nu(\phi_{m})+\nu(\phi_{0})\mu(\phi_{m})]^{2}}{(\lambda_{m}-\lambda_{0})[B(\lambda_{m})-B(\lambda_{0})]^{2}}e^{-2[B(\lambda_{m})-B(\lambda_{0})]t} + c(1+\epsilon^{-1})\|h\phi_{0}^{-1}\|_{\infty}^{2}e^{-2[B(\lambda_{1})-B(\lambda_{0})]t}, \quad t > 997, \epsilon > 0.$$

Due to that

$$\lim_{t \to \infty} \{ e^{B(\lambda_0)t} \mathbb{P}^{\nu}(t < \sigma_{\tau}^B) \} = \mu(\phi_0)\nu(\phi_0),$$

letting $t \to \infty$ first and then $\epsilon \to 0^+$, we finally arrive at

$$\limsup_{t\to\infty} \{t^2 W_2(\mu_t^{B,\nu},\mu_0)^2\} \le 4\mathrm{I}.$$

Final step

Putting these estimates together, we find a constants c > 0 such that

$$\begin{split} t^{2}W_{2}(\mu_{t}^{B,\nu},\mu_{0})^{2} &\leq \frac{4(1+\epsilon)e^{-2B(\lambda_{0})t}}{\mathbb{P}^{\nu}(t<\sigma_{\tau}^{B})^{2}}\sum_{m=1}^{\infty}\frac{[\mu(\phi_{0})\nu(\phi_{m})+\nu(\phi_{0})\mu(\phi_{m})]^{2}}{(\lambda_{m}-\lambda_{0})[B(\lambda_{m})-B(\lambda_{0})]^{2}} \\ &+ c(1+\epsilon^{-1})\sum_{m=1}^{\infty}\frac{[\mu(\phi_{0})\nu(\phi_{m})+\nu(\phi_{0})\mu(\phi_{m})]^{2}}{(\lambda_{m}-\lambda_{0})[B(\lambda_{m})-B(\lambda_{0})]^{2}}e^{-2[B(\lambda_{m})-B(\lambda_{0})]t} \\ &+ c(1+\epsilon^{-1})\|h\phi_{0}^{-1}\|_{\infty}^{2}e^{-2[B(\lambda_{1})-B(\lambda_{0})]t}, \quad t>997, \epsilon>0. \end{split}$$

Due to that

$$\lim_{t \to \infty} \{ e^{B(\lambda_0)t} \mathbb{P}^{\nu}(t < \sigma_{\tau}^B) \} = \mu(\phi_0)\nu(\phi_0),$$

letting $t \to \infty$ first and then $\epsilon \to 0^+$, we finally arrive at

$$\limsup_{t\to\infty}\{t^2W_2(\mu_t^{B,\nu},\mu_0)^2\}\leq 4\mathrm{I}.$$

" Thanks! "