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The Question

Given a Markov process X := (Xt)t≥0 on a Polish space (M, ρ) with a
Borel probability measure µ, we expect that

1
t

∫ t

0
Tsf ds t→∞→

∫
M

f dµ =: µ(f ), f ∈ Cb(M), (E)

where Ttf (x) := Ex[f (Xt)].

Denote the empirical measures associated with X as

µt =
1
t

∫ t

0
δXu du, t > 0,

where δ· is the Dirac measure.
CLASSIC: if µ is the unique invariant probability measure of X, then
for every x ∈ M, Px-a.s., as t→∞,

µt
w→ µ, i.e., µt(f )→ µ(f ), f ∈ Cb(M).

which in particular implies (E). See e.g. Da Prato–Zabczyk (1996).

What about the rate of convergence??
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The Problem

Let p ∈ [1,∞). Define the (pseudo) Wasserstein (or Kantorovich)
distance as

Wp(ν1, ν2) =
(

inf
π∈C(ν1,ν2)

∫
M×M

ρ(x, y)p dπ(x, y)
)1/p

, ν1, ν2 ∈ P(M),

where C(ν1, ν2) stands for the class of couplings of ν1 and ν2, P(M)
is the class of probability measures on M.

The problem is to study the behavior for large t of

E
[
Wp(µt, µ)p].
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Diffusion processes

Consider the triple (M, ρ, µ), where

M d-dimensional compact connected Riemannian manifold with
smooth boundary ∂M,

ρ geodesic distance on M,

µ Borel probability measure defined by

µ(dx) = eU(x)vol(dx),

where U ∈ C2(M) and vol is the volume measure.

Let Xt be the diffusion process generated by

L = ∆ +∇U,

with hitting time

τ = inf{t ≥ 0 : Xt ∈ ∂M}.
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Spectral properties of −L

Let N0 = {0} ∪ N. It is well known that the spectrum of −L is
discrete, whose eigenvalues are listed in an ascending order counting
multiplicities

0 < λ0 ≤ λ1 ≤ λ2 ≤ · · · → ∞,

and the eigenfunctions φm, m ∈ N0, satisfying the Dirichlet boundary
condition, form an ONB in L2(µ).

WLOG, assume φ0 > 0 on M̊ := M \ ∂M.

Moreover, there exists a constant κ ≥ 1 such that

κ−1m
2
d ≤ λm − λ0 ≤ κm

2
d , ‖φm‖∞ ≤ κ

√
m, m ∈ N.
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Subordinate killed diffusion processes

Let

B = {B : B is a Bernstein function with B(0) = 0, B′(0) > 0},
where recall that B is a Bernstein function if

B ∈ C∞
(
(0,∞); [0,∞)

)
∩ C
(
[0,∞); [0,∞)

)
,

and for each n ∈ N,

(−1)n−1 dn

drn B(r) ≥ 0, r > 0.

WELL KNOWN: ∀B ∈ B, ∃! subordinator (SB
t )t≥0 such that

Ee−λSB
t = e−tB(λ), t, λ ≥ 0.

From now on, let B ∈ B and (SB
t )t≥0 be the subordinator independent

of (Xt)t≥0. Define the subordinate killed diffusion process (XB
t )t≥0 as

XB
t = XSB

t ∧τ , t ≥ 0.
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Conditional empirical measures

Let
σB
τ := inf{t ≥ 0 : SB

t > τ}.
Define the conditional empirical measures associated with (XB

t )t≥0 by

µB,ν
t = Eν

(1
t

∫ t

0
δXB

s
ds
∣∣∣σB
τ > t

)
, t > 0, ν ∈ P(M),

where P(M) stands for the set of all Borel probability measures on M.

NOTE: to avoid the situation that Pν(σB
τ > t) = 0, we should consider

P0(M) := {ν ∈ P(M) : ν(M̊) > 0}.

Let
µ0 := φ2

0µ,

which turns out to be the unique quasi-ergodic distribution of (XB
t )t≥0

for “nice” B, i.e., for every ν ∈ P(M) and every Borel set E ⊂ M,

lim
t→∞

Eν
[1

t

∫ t

0
1E(XB

s ) ds
∣∣∣σB
τ > t

]
= µ0(E).
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The aim

Recall that, for every p ∈ [1,∞),

Wp(µ, ν) =
(

inf
π∈C(µ,ν)

∫
M×M

ρ(x, y)p dπ(x, y)
)1/p

, µ, ν ∈ P(M).

The aim is, for every ν ∈ P0(M), as t→∞, to study the rate of
convergence of µB,ν

t to µ0 under the quadratic Wasserstein distance

W2(µB,ν
t , µ0).

In particular, when B(t) = t, see F.-Y. Wang (2021).
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Some notations

Let α ∈ (0, 1] and

Bα :=

{
B ∈ B : lim inf

λ→∞

B(λ)

λα
> 0
}
,

Bα :=

{
B ∈ B : lim sup

λ→∞

B(λ)

λα
<∞

}
.

Typical example:
B(t) = tα, α ∈ (0, 1].

For other examples, refer to Schilling–Song–Vondrac̆ek (2012).

RECALL: λm, φm, m ∈ N0, are eigenvalues and eigenfunctions with
Dirichlet boundary condition of the operator −L in L2(µ).
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Upper bounds

Recall µ = eUvol. Let B ∈ B and ν ∈ P0(M). Set

I :=
1

{µ(φ0)ν(φ0)}2

∞∑
m=1

{ν(φ0)µ(φm) + µ(φ0)ν(φm)}2

(λm − λ0)[B(λm)− B(λ0)]2
.

Theorem (L.–Bingyao Wu)

Let α ∈ (0, 1] and ν ∈ P0(M). If B ∈ Bα, then

lim sup
t→∞

{t2W2(µB,ν
t , µ0)2} ≤ 4I ∈ (0,∞].

Moreover, if B ∈ Bα ∩ Bα, then I is finite in either of the two cases:

(1) d ≤ 2(1 + 2α),

(2) d > 2(1 + 2α) and ν = hµ with h ∈ L2d/(d+2+4α)(µ).

The rate of convergence is sharp!
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The exact limit

Theorem (L.–Bingyao Wu)

Let α ∈ (0, 1] and B ∈ Bα. Then, for any ν = hµ ∈ P0(M) with
hφ−1

0 ∈ Lp(µ0) for some p ∈ (p0,∞],

lim
t→∞
{t2W2(µB,ν

t , µ0)2} = I,

where

p0 :=
6(d + 2)

d + 2 + 12
∨ 3

2
.

In the particular B(t) = t case, F.-Y. Wang (2021) prove the limit for
all ν ∈ P0(M). So, how to drop the addition condition on ν?
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The target

From now on, B ∈ Bα for some α ∈ (0, 1], which implies that

B(r) & rα, r > 1.

With some efforts (NOT TRIVIAL), we reduce to prove the following.

Proposition

For every ν ∈ P0(M) satisfying that ν = hµ and ‖hφ−1
0 ‖∞ <∞,

lim sup
t→∞

{t2W2(µB,ν
t , µ0)2} ≤ 4I.

Recall

I =
1

{µ(φ0)ν(φ0)}2

∞∑
m=1

{ν(φ0)µ(φm) + µ(φ0)ν(φm)}2

(λm − λ0)[B(λm)− B(λ0)]2
.
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The overall idea

Consider the Doob transform of L, denoted by

L0 = L+ 2∇ logφ0,

and the corresponding semigroup (P0
t )t≥0.

FACT: {φmφ
−1
0 }m∈N0 is an eigenbasis of −L0 in L2(µ0).

To estimate W2(µB,ν
t , µ0)2, we apply the inequality (F.-Y. Wang 2022

or Ambrosio–Stra–Trevisan 2019 or Ledoux 2017): for every f ≥ 0
with µ0(f ) = 1,

W2(fµ0, µ0)2 ≤ 4
∫

M
|∇(−L0)−1(f − 1)|2 dµ0.
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Step 1: calculate the Radon–Nikodym derivative

dµB,ν
t

dµ0
= ρB,ν

t − At +
1

Pν(t < σB
τ )

∫ t

0
ξs ds + 1,

where

ρB,ν
t :=

e−B(λ0)t

tPν(t < σB
τ )

∞∑
m=1

µ(φ0)ν(φm) + ν(φ0)µ(φm)

B(λm)− B(λ0)
φmφ

−1
0 ,

At :=
1

tPν(t < σB
τ )

∞∑
m=1

µ(φ0)ν(φm) + ν(φ0)µ(φm)

B(λm)− B(λ0)
e−B(λm)tφmφ

−1
0 ,

ξs :=
( ∞∑

m=1

e−B(λm)sν(φm)φmφ
−1
0

)( ∞∑
n=1

e−B(λn)(t−s)µ(φn)φnφ
−1
0

)
−
∞∑

m=1

e−B(λm)tµ(φm)ν(φm), 0 < s ≤ t.
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Step 2: apply Ledoux’s inequality

For any ε > 0, we have

W2(µB,ν
t , µ0)2 ≤ 4

∫
M

∣∣∣∇(−L0)−1
(dµB,ν

t

dµ0

)∣∣∣2 dµ0

≤ 4(1 + ε)

∫
M
|∇(−L0)−1ρB,ν

t |2 dµ0

+ 8(1 + ε−1)

∫
M
|∇(−L0)−1At|2 dµ0

+ 8(1 + ε−1)

∫
M

∣∣∣∇(−L0)−1 1
tPν(t < σB

τ )

∫ t

0
ξs ds

∣∣∣2 dµ0

=: 4(1 + ε)J1 + 8(1 + ε−1)J2 + 8(1 + ε−1)J3,

where the triangle inequality of ‖ · ‖L2(µ0) was also employed.
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Step 3: calculate J1 and J2

Since

−L0(φmφ
−1
0 ) = (λm − λ0)φmφ

−1
0 , ‖φmφ

−1
0 ‖L2(µ0) = 1, m ∈ N,

by the integration-by-parts formula, we have∫
M
|∇(−L0)−1(φmφ

−1
0 )|2 dµ0 =

1
λm − λ0

, m ∈ N.

Then

J1 =
e−2B(λ0)t

t2Pν(t < σB
τ )2

∞∑
m=1

[µ(φ0)ν(φm) + ν(φ0)µ(φm)]2

(λm − λ0)[B(λm)− B(λ0)]2
, (dominant term)

J2 =
1

t2Pν(t < σB
τ )2

∞∑
m=1

[µ(φ0)ν(φm) + ν(φ0)µ(φm)]2

(λm − λ0)[B(λm)− B(λ0)]2
e−2B(λm)t.
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Step 4: estimate J3

Since (−L0)−
1
2 = 2√

π

∫∞
0 P0

s2 ds, by Minkowski’s inequality, we get

J3 =
1

t2Pν(t < σB
τ )2

∫
M

∣∣∣ 2√
π

∫ ∞
0

∫ t

0
P0

r2ξs dsdr
∣∣∣2 dµ0

≤ 4
πt2Pν(t < σB

τ )2

(∫ ∞
0

∫ t

0
‖P0

r2ξs‖L2(µ0) dsdr
)2
, t > 0.

Applying the fact that, there exists a constant η > 0 such that, for
every t ≥ 0, p ∈ [1,∞] and f ∈ Lp(µ0),

‖(P0
t − µ0)f‖Lp(µ0) ≤ ηe−(λ1−λ0)t‖f‖Lp(µ0),

we have

‖P0
r2ξs‖L2(µ0) ≤ 2η‖hφ−1

0 ‖∞e−B(λ1)te−(λ1−λ0)r2
, r, s > 0.

Thus, by B(r) & rα for r > 1, there exists a constant c > 0 such that

J3 ≤ c‖hφ−1
0 ‖

2
∞e−2[B(λ1)−B(λ0)]t, t > 97.
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Final step

Putting these estimates together, we find a constants c > 0 such that

t2W2(µB,ν
t , µ0)2 ≤ 4(1 + ε)e−2B(λ0)t

Pν(t < σB
τ )2

∞∑
m=1

[µ(φ0)ν(φm) + ν(φ0)µ(φm)]2

(λm − λ0)[B(λm)− B(λ0)]2

+ c(1 + ε−1)

∞∑
m=1

[µ(φ0)ν(φm) + ν(φ0)µ(φm)]2

(λm − λ0)[B(λm)− B(λ0)]2
e−2[B(λm)−B(λ0)]t

+ c(1 + ε−1)‖hφ−1
0 ‖

2
∞e−2[B(λ1)−B(λ0)]t, t > 997, ε > 0.

Due to that

lim
t→∞
{eB(λ0)tPν(t < σB

τ )} = µ(φ0)ν(φ0),

letting t→∞ first and then ε→ 0+, we finally arrive at

lim sup
t→∞

{t2W2(µB,ν
t , µ0)2} ≤ 4I.
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" Thanks! "
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