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Given a Markov process X := (X;);>0 on a Polish space (M, p) with a
Borel probability measure p, we expect that

1 ! —00
t/o T ds '3 /Mfdu —ulf), FECM),  ®

where Tif (x) := E*[f(X,)].
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where §. is the Dirac measure.
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where 0. is the Dirac measure.
CLASSIC: if 4 is the unique invariant probability measure of X, then
for every x € M, P*-a.s., as t — o0,

M K) K, i-e'7 ;U't(f) - M(f)? f € Cb(M)
which in particular implies (E). See e.g. Da Prato—Zabczyk (1996).
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What about the rate of convergence??
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The Problem

Let p € [1,00). Define the (pseudo) Wasserstein (or Kantorovich)
distance as

. 1/p
W) = (it [t anten) L s e Poa)
X

meC(v1,12)

where C(vy, 1) stands for the class of couplings of v; and v, P(M)
is the class of probability measures on M.

The problem is to study the behavior for large t of

E [Wp(ut, ,u)p} .



Diffusion processes

Consider the triple (M, p, i), where

M d-dimensional compact connected Riemannian manifold with
smooth boundary OM,

p geodesic distance on M,

1 Borel probability measure defined by
pl(dx) = e@vol(dx),

where U € C?(M) and vol is the volume measure.
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Diffusion processes

Consider the triple (M, p, i), where

M d-dimensional compact connected Riemannian manifold with
smooth boundary OM,

p geodesic distance on M,

1 Borel probability measure defined by
pl(dx) = e@vol(dx),

where U € C?(M) and vol is the volume measure.

Let X; be the diffusion process generated by
L=A+VU,
with hitting time

T=inf{r >0: X, € OM}.
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Spectral properties of —L

Let No = {0} U N. It is well known that the spectrum of —L is
discrete, whose eigenvalues are listed in an ascending order counting
multiplicities

0<X <A <<= o0,

and the eigenfunctions ¢,,, m € Ny, satisfying the Dirichlet boundary
condition, form an ONB in L2(p).

WLOG, assume ¢ > 0 on M := M \ OM.

Moreover, there exists a constant x > 1 such that

< =X < kmi,  |dullos < K/m,  meN.

B[S

nflm
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Subordinate killed diffusion processes

Let
B = {B: Bis aBernstein function with B(0) = 0, B'(0) > 0},
where recall that B is a Bernstein function if
B € C*((0,00);[0,00)) N C([0,00);[0,00)),
and foreachn € N,

(=1

n-1 4"
dr -
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Subordinate killed diffusion processes

Let
B = {B: Bis aBernstein function with B(0) = 0, B'(0) > 0},
where recall that B is a Bernstein function if
B € C*((0,00);[0,00)) N C([0,00);[0,00)),
and foreachn € N,

(=1

ldn
n—
@B(’”) 2 O, r>0.

WELL KNOWN: V B € B, 3! subordinator (S8),>¢ such that

R = e_tB(’\), t,A>0.

From now on, let B € B and (S%),>( be the subordinator independent
of (X;)r>0. Define the subordinate killed diffusion process (X?),>0 as

B
X[ — XSIB/\T7 t Z O
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Conditional empirical measures

Let
ol =inf{r>0: 58 > r}.

Define the conditional empirical measures associated with (XZ),~( by

1 t
/i?’u = HEV (d/P 6xB ds
tJo

where P (M) stands for the set of all Borel probability measures on M.

o—f>t), t>0,vePM),

NOTE: to avoid the situation that P*(c8 > t) = 0, we should consider

Po(M) :={v € P(M) : v(M) > 0}.
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Conditional empirical measures

Let
ol =inf{r>0: 58 > r}.

Define the conditional empirical measures associated with (XZ),~( by

1 t
MIBJ/ = ]Ey (/ 6xB ds
t)y %

where P (M) stands for the set of all Borel probability measures on M.

o—f>t), t>0,vePM),

NOTE: to avoid the situation that P*(c8 > t) = 0, we should consider
Po(M) :={v € P(M) : v(M) > 0}.
Let
110 = P51,

which turns out to be the unique quasi-ergodic distribution of (X2),>o
for “nice” B, i.e., for every v € P(M) and every Borel set E C M,

1 t
lim E [/ 15(XP) ds
t—00 t 0

ob > t] = uo(E).
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Recall that, for every p € [1, 00),

1/p
p— 1 p
Wolu) = (ot [ pxrantn) " e PO

The aim is, for every v € Py(M), as t — oo, to study the rate of
convergence of u?’y to o under the quadratic Wasserstein distance

B,
Wa (g™, pio)-
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Recall that, for every p € [1, 00),

1/p
p— 1 p
Wolu) = (ot [ pxrantn) " e PO

The aim is, for every v € Py(M), as t — oo, to study the rate of
convergence of u?’y to o under the quadratic Wasserstein distance

B,
Wa (g™, pio)-

In particular, when B(¢) = ¢, see E.-Y. Wang (2021).
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Main results
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Some notations

Let € (0, 1] and

B* := {B €B: liminfB()\) > 0} ,
A

A—00

B, = {B € B : limsup B < oo} .

A—00 A

Typical example:
B(t) =t*, «a€(0,1].

For other examples, refer to Schilling—Song—Vondracek (2012).
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B* := {B €B: liminfB()\) > 0} ,
A

A—00

B, = {B € B : limsup B < oo} .

A—00 A

Typical example:
B(t) =t*, «a€(0,1].

For other examples, refer to Schilling—Song—Vondracek (2012).

RECALL: A, ¢y, m € Np, are eigenvalues and eigenfunctions with
Dirichlet boundary condition of the operator —£ in L?(p).



Upper bounds

Recall ;1 = eYvol. Let B € B and v € Py(M). Set

Gm) + 11(¢0)v(¢m) }*

_ 1 — {(¢0)u
b= {1(¢o)v(¢o)}? ; (Am = A0)[B(An) — B(Xo)]*

Theorem (L.-Bingyao Wu)
Leta € (0,1] and v € Po(M). If B € B, then
tim sup{* W (e, 110)*} < 41 € (0, 0]

—0o0

Moreover, if B € B N By, then 1 is finite in either of the two cases:
(1) d <2(1+2a),

() d > 2(1 4+ 2a) and v = hy with b € L24/(d+2H4) (1)),

The rate of convergence is sharp!
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The exact limit

Theorem (L.—Bingyao Wu)
Let o € (0, 1] and B € B*. Then, for any v = hu € Po(M) with
hoy ! € 1P (so) for some p € (po, o),

. 2 B,v 21
tl_lglo{f Walp ™, o)} =1,

where
_ 6(d +2) 3

P=ai211272 |

14/23



The exact limit

Theorem (L.—Bingyao Wu)
Let o € (0, 1] and B € B*. Then, for any v = hu € Po(M) with
hoy ! € 1P (so) for some p € (po, o),

. 2 B,v 21
tl_lglo{f Walp ™, o)} =1,

where

6(d+2) 3
=V —.
P =g+ 12 7 2

In the particular B(f) = t case, F.-Y. Wang (2021) prove the limit for
all v € Py(M). So, how to drop the addition condition on v?
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Idea of proofs



The target

From now on, B € B® for some a € (0, 1], which implies that
B(r)zr*, r>1.

With some efforts (NOT TRIVIAL), we reduce to prove the following.

Proposition

For every v € Po(M) satisfying that v = hy and ||hdy ' ||oo < o0,

lim sup{~* W (™", 110)*} < 41.

t—00

Recall

[e.9]

I— 1 3 {v(¢0)1t(Pm) + 11(¢0)v (dm)}*
{n(¢o)v(¢0)} (Am = 20)[B(Am) —B(N)]*

m=1
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The overall idea

Consider the Doob transform of £, denoted by
Lo = L+ 2V 1og ¢y,

and the corresponding semigroup (PY),>o.

FACT: {m®y ' tmen, is an eigenbasis of —Lg in L2 (up).
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The overall idea

Consider the Doob transform of £, denoted by
Lo = L+ 2V 1og ¢y,

and the corresponding semigroup (PY),>o.

FACT: {m®y ' tmen, is an eigenbasis of —Lg in L2 (up).

To estimate Wz(,u?’”, 10)%, we apply the inequality (F.-Y. Wang 2022
or Ambrosio—Stra—Trevisan 2019 or Ledoux 2017): for every f > 0
with u()(f) =1,

Wa (f o, 110)* < 4/ IV (=Lo)~'(f — 1)[* duo.
M
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Step 1: calculate the Radon—Nikodym derivative

AN I S LR
duo TPt <oB) Jp ’
where
By . e_B()\O)t — M(¢0)V(¢m) + V(¢0)M(¢m) —1
CT < 0B mzl BOw) —B(h) %0
1 o 1(P0)v(dm) + v(00)1(m) _povwy . 1
Ar t]P”/(t<o—£)mz::1 B(An) — B(X\o) ¢ oo
&= (2 e u(Gm)amsy ) (32 e PO () dndy ")
m=1 n=1
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Step 2: apply Ledoux’s inequality

For any € > 0, we have
d 2
Wa (2 <4/)v “’ )) dyig
§4<1+e>/ \v<—£o> B an
M

+8(1+6_1)/ V(= Lo) Ay dpg

+ 8 J/F “7 1:0 ;Eﬁ;‘;‘;;:;2;* J/P {3 dS d[LO

= 4(14e)J; +8(1+e Hh+8(1+€e s,

where the triangle inequality of || - [|;2(,,) Was also employed.
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Step 3: calculate J; and J;

Since

—Lo(dmdy") = (Am — A0)bmdy s Nl omdy N2y =1, mEN,

by the integration-by-parts formula, we have

m € N.

—1 —1y|2 _
V0 Gt P o = 5

Then
e*ZB()\())t

Jy =
"7 2Pt < oB)2
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Step 4: estimate J3

Since (— £0)_% = % s sz ds, by Minkowski’s inequality, we get

J ‘ sdd "4
T tZIP’Vt<aB /\f/ / Pppésdsdr| - duo
0
Sm / / P2 dsdr) 1 0.

Applying the fact that, there exists a constant 7 > 0 such that, for
everyt > 0,p € [1,00] and f € L (o),

1CPY = 10)f o) < €™ M2 [F |1y g,
we have
1Pl 2y < 20085 [lsce™ PO e M0, s> 0,
Thus, by B(r) 2 r® for r > 1, there exists a constant ¢ > 0 such that
J3 < c|lhgy || 2e HEGD =Bl s 97,
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Putting these estimates together, we find a constants ¢ > 0 such that

4(1 4 €)e 2B S [1(o)v(dm) + v(b0) 1t(dm)

]2
Pr(t <o) 2= (An = A0)[B(An) — B(M)]?

EWa (e o)* <

= v(gm) +v m)]> _ )
+C(1+61)mz::l [ﬁ(t>(\¢0)_ )(\(f)[;:\ ;cfio)g((;\ﬁo)ﬁ o—21BOW)—B()]

+c(1+ €N |hgy ! |Poe BON =B 15997 ¢ > 0.
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Putting these estimates together, we find a constants ¢ > 0 such that

4(1 + €)e P00 S [u(d0)v(dm) + v(d0) (dm)

]2
BU(t < 0B 2= (A — A0)[BOw) — BOw)

EWa (e o)* <

+C(1+61)mz::l [()(\¢0)_ )(\fT[)ZL ;cf)o) ((;\bo);l o—21BOW)—B()]

F (1 + ) |hgy [P e 2BON=BOI 15 997, ¢ > 0,

Due to that

lim {PCPY (1 < 0B)} = p(go)v (o),

t—o0

letting t — oo first and then € — 0T, we finally arrive at

lim sup{~* W (", p10)*} < 41.

t—00



" Thanks! "
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